Защита алюминия от коррозии

1.2. Коррозия алюминия в различных условиях

В малозагрязненной окружающей среде поверхность алюминия будет оставаться без изменений в течение многих лет и для большинства алюминиевых сплавов не требуется никакой защиты от коррозии.

В умеренной промышленной окружающей среде алюминиевая поверхность темнеет и огрубляется. Если окружающая среда становится более агрессивной, например, более кислотной или щелочной, обесцвечивание поверхности и ее шероховатость становятся более явными с белым налетом порошкообразных оксидов. В таких случаях алюминий требует полной защиты от коррозии. Аналогичные условия могут возникать в местах контактов между элементами конструкций из-за локальной повышенной кислотности или щелочности.

В условия морского побережья поверхность алюминия огрубляется и становится серой. В этих условиях коррозионная защита некоторых алюминиевых сплавов является обязательной.

При погружении алюминиевых конструкций в воду, пресную или морскую, применение специальных мер по защите любых алюминиевых сплавов от коррозии является обязательным.

В общем случае конструкции необходимо проектировать таким образом, чтобы избегать коррозии алюминия. Необходимо всегда рассматривать возможность возникновения гальванической и щелевой коррозии и предусматривать меры по их предотвращению. Все элементы конструкций должны предусматривать дренаж влаги.

Если необходимо сохранять декоративный внешний вид алюминия в течение длительного времени, то применяют подходящую обработку поверхности в виде органического покрытия (жидкого, порошкового) или анодного покрытия.

Если необходимо сохранять декоративный внешний вид алюминия в течение длительного времени, то применяют подходящую обработку поверхности в виде органического покрытия (жидкого, порошкового) или анодного покрытия.

Защита алюминия покрытиями

ОСНОВНЫЕ ПРИНЦИПЫ ЗАЩИТЫ ПОКРЫТИЯМИ

Ранее алюминиевые сплавы в зависимости от их способности подвергаться коррозионному растрескиванию и расслаивающей коррозии, были разделены на три основные группы. В зависимости от особенностей сплавов, входящих в ту или иную группу, системы покрытий также следует разделять на три группы.

Первая группа, включающая наиболее универсальную схему защиты, может быть применена для стойких сплавов (первая группа) и некоторых состояний сплавов третьей группы, имеющих повышенные коррозионные свойства в тех случаях, когда нет значительных циклических нагрузок. В данном случае можно применять защитно-декоративное анодное оксидирование (анодирование), лакокрасочные покрытия, а также комплексные покрытия, состоящие из анодно-оксидной пленки с последующим нанесением на нее лаковых или эмалевых покрытий. Одной из самых простых схем в этом случае является защитно-декоративное анодирование как бесцветное, так и цветное. В первом случае долговечность покрытия определяется главным образом сопротивлением коррозии, во втором еще и светостойкостью. При отсутствии воздействия ультрафиолетовых лучей, т. е. для внутренней отделки (поверхности внутри помещений), может быть использована обычная система адсорбционного окрашивания анодно-оксидной пленки органическими красителями. Гамма цветов при этом достаточно широка.

В настоящее время существуют компании, которые специализируются на нанесении защитных покрытий, так например анодирование алюминия в Москве с неизменным качеством осуществляет компания “Гальваника”.

Для конструкций, эксплуатирующихся в открытой атмосфере, использование даже лучших органических цветных красителей в сочетании с прогрессивными технологическими процессами анодирования не позволяет получить долговечность более десяти лет. Для современных конструкций, например строительных, необходимо обеспечить по крайней мере 20-30 лет эксплуатации без полного обновления облицовки. В этих случаях следует применять анодирование с самоокрашиванием, анодирование с электролитическим окрашиванием и частично с окрашиванием красителями. Из красителей, обеспечивающих требуемую светостойкость, получили распространение неорганические для окраски в бронзовый и золотые тона и органический краситель черный светопрочный. Цвет защитно-декоративных анодно-оксидных пленок, полученных по методу самоокрашивания, зависит от толщины пленки. Для тонких пленок, т. е. для пленок светлых тонов (в интервале цветов золотистый – темно-бронзовый) иногда требуется дополнительная защита полимерными лаками, в то время как для пленок темных тонов дополнительная защита не обязательна. Используя сочетание обычных методов бесцветного анодирования с процессами самоокрашивания можно получить и оксидные пленки светлых тонов достаточной толщины с высокой коррозионной стойкостью.

Покрытия второй группы используют для деталей, подвергаемых значительным циклическим нагрузкам. Они распространяются на стойкие сплавы первой и третьей групп, а также на те состояния сплавов второй группы, которые обеспечивают высокое сопротивление как коррозионному растрескиванию, так и расслаивающей корозии. Для этого класса применяют лакокрасочные и полимерные покрытия; во многих случаях целесообразно полностью исключить подготовку поверхности обычными методами анодного оксидирования, когда толщина пленки превышает 3 мкм. Это связано с тем, что на поверхности образцов, анодированных в сернокислотном электролите, на толщину 10 мкм, трещины появляются при угле загиба всего лишь 4°; при уменьшении толщины сернокислотной пленки до 5 мкм трещины образуются при угле загиба 30°. В этих же условиях возникают трещины и в пленке, полученной в хромовокислом электролите, но их число меньше. На поверхности материалов с конверсионными хроматно-фосфатными пленками, особенно при толщине 0,1-0,3 мкм, и с анодно-оксидной толщиной 0,05-0,15 мкм трещины не наблюдаются даже при загибе на 180°. Как видно из табл. 78, анодное оксидирование заметно снижает усталостную выносливость.

Для пленки, полученной в хромовокислом электролите, этот эффект несколько меньше при малых значениях механических напряжений. Имеются сведения о положительном влиянии анодно-оксидных пленок на предел выносливости сплавов. При этом авторы исходили из того, что в анодно-оксидной пленке возникают сжимающие напряжения. Поэтому, если уменьшить величину напряжений (например, путем добавок в раствор анодирования или другими технологическими приемами), то проявляется положительный эффект, аналогичный эффекту поверхностной пластической деформации при обкатке роликами или дробеструйной обработке.

Эксперименты, однако, показали, что наибольшее влияние оказывает неоднородный рельеф пленки, способствующий концентрации напряжений. Поэтому и предел выносливости, хотя и в меньшей степени, чем сопротивление усталости при повышенных значениях напряжений на ограниченной базе, но понижается. Примером могут служить результаты испытаний анодированных образцов сплава В95Т1, изготовленные из прессованного полуфабриката (рис. 98).

Как видно из рис. 98, травление в щелочи снижает предел выносливости на 40%. Если теперь за исходное взять значение предела выносливости травленого образца, то анодирование на 3; 5; 10 мкм уменьшает его на 10, 30, 40 % соответственно. Отрицательное влияние анодно-оксидной пленки толщиной более 3 мкм проявляется и при нанесении лакокрасочного покрытия. Возникновение трещин в оксидной пленке снижает адгезию лакокрасочного покрытия и коррозионную стойкость в этих местах.

Трещины в анодно-оксидной пленке появляются в результате преобразования ее структуры под влиянием нагревов. Такие трещины также приводят к образованию коррозионных точек вследствие нарушения адгезии.

Тонкослойные методы подготовки поверхности под лакокрасочное покрытие имеют преимущество перед обычными анодно-оксидными. Они позволяют не только устранить понижение усталостной прочности, но и повысить адгезию – один из главных показателей, определяющих коррозионную стойкость. Ниже приведены значения адгезии для различных видов обработки поверхности, г/см:

Третью группу покрытий целесообразно применять для второй и третьей групп сплавов, если последние обладают чувствительностью к расслаивающей коррозии или коррозионному растрескиванию. От этих видов коррозионного поражения не удается защитить алюминиевые сплавы лакокрасочными и полимерными пленками. Необходимо использовать металлические покрытия в виде плакирующих или термодиффузионных слоев, обеспечивающих электрохимическую защиту. Еще более эффективна комплексная защита, в которой металлическое покрытие дополнительно защищено лакокрасочным слоем. Из табл.79 видно, что в агрессивной среде для сплава системы А1-Сu-Мп (1201) даже плакирование алюминием с добавкой цинка (АЦпл) не обеспечивает полной защиты от межкристаллитного питтинга.

Технический алюминий в качестве плакирования мало эффективен. Ненамного отличается от него алюминий высокой чистоты. Однако специальный сплав АЦ2 практически полностью защищает основу, при этом он и сам подвергается коррозии заметно меньше, чем другие сплавы, указанные в табл. 83. Это обусловлено изменением (вследствие специального легирования) электрофизических свойств поверхностной пленки, резко снижающим процесс саморастворения плакирующего слоя.

Эффект анодной защиты проявляется заметнее в том случае, когда покрытия третьей группы используют в целях предупреждения сквозной питтинговой коррозии тонкостенных оболочек. Это связано с тем, что при сдвиге потенциала в пассивную область питтинг на алюминиевых сплавах не возникает (табл. 80).

Если контактную пару металл – покрытие подобрать таким образом, чтобы ее потенциал был в пассивной области для обоих контактирующих материалов, вероятность образования и развития питтинга существенно снижается.

Для защиты от расслаивающей коррозии и коррозионного растрескивания недостаточно контролировать только электродный потенциал, поскольку при определенной степени пассивации чувствительность к этим видам коррозии усиливается. В этих случаях, согласно кинетике электрохимических реакций, металлическое покрытие на алюминиевых сплавах для достаточной защиты должно в контакте с основой обеспечивать ток, несколько превышающий по значению предельный диффузионный ток (рис. 99).

Оценка эффективности плакирования по электрохимическим характеристикам совпадает с результатами испытаний на расслаивающую коррозию и коррозионное растрескивание. Например, испытания тонкого листа из сплава Д16 со снятой плакировкой показали, что образцы в виде «петель» в среднем разрушаются за 20 дней, а в четырехточечном приспособлении – за 50 дней. Плакированные образцы не разрушаются в течение года и более.

Аналогичная картина наблюдается и для сплавов; АК4-1 и 1201 при плакировании сплавом АЦпл. В то же время при плакировании алюминием АД1 образцы разрушаются, хотя и за более значительное время, чем без плакирования. Плакирование сплавами АД1, АЦпл, АЦ2 хотя и обеспечивает заметный защитный эффект, но понижает механическую и особенно усталостную прочность. Однако применение сплава П35-3 позволяет одновременно повышать предел усталости (практически без снижения уровня временного сопротивления) и достигать более значительной эффективности электрохимической защиты по сравнению со сплавом АЦпл. В США аналогичные сплавы 7008, 7011 также используются для защиты проката из сплава В95 (7075) с целью увеличения сопротивления усталости.

Метод электрохимической защиты металлическим покрытием оказался пригодным и для сварных соединений. Так, сварные соединения из сплава 1201, выполненные из листов со снятым плакирующим слоем, в испытаниях с заданной растягивающей нагрузкой при переменном погружении в 3 %-ный раствор NaCl интенсивно разрушались при напряжениии выше 140 МПа. Разрушение плакированных образцов в тех же условиях наблюдалось только при напряжениях выше 240 МПа.

Представляет большой интерес электрохимическая защита сварных соединений из сплавов системы А1- Zn-Mg. Образцы сплава (4,2 % Zn; 1,8 % Mg; 0,3 % Mn; 0,15 % Cr; 0,18 % Zr), защищенные как плакированием, так и напылением сплава П35-3, при испытании в течение 6 мес в морской тропической атмосфере не проявили чувствительности к расслаивающей коррозии. Они также не разрушались при испытании на коррозионное растрескивание в течение года в 3 %-ном растворе NaCl (табл. 81).

Автор: Администрация Общая оценка статьи: Опубликовано: 2016.09.16 Обновлено: 2020.03.04

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Технический алюминий в качестве плакирования мало эффективен. Ненамного отличается от него алюминий высокой чистоты. Однако специальный сплав АЦ2 практически полностью защищает основу, при этом он и сам подвергается коррозии заметно меньше, чем другие сплавы, указанные в табл. 83. Это обусловлено изменением (вследствие специального легирования) электрофизических свойств поверхностной пленки, резко снижающим процесс саморастворения плакирующего слоя.

Порошковое окрашивание

Для использования этого метода металл также нужно очистить от слоя жира, других включений. Подготовку проводят погружением в щелочные, слабощелочные (почти нейтральные), кислотные растворы. Для повышения эффективности очистки иногда добавляют смачиватели.

Следующей стадией подготовки некоторых алюминиевых конструкций является формирование конверсионного слоя обработкой хроматными, фосфатными составами. Иногда используют циркониевые, титановые соединения. Необходимость этого этапа определяется специфическими особенностями изделия. Это вопрос компетенции технологов. Выполнение каждого этапа обработки чередуется с обязательным промыванием и сушкой материала.

Затем наносят полимер, выполняющий защитную функцию. Широко используют полиэфиры. Они образуют плотный слой, стойкий к химическому, механическому, термическому воздействию. Покрытия из полимеризованного уретана обладают большей твердостью. Применяют также эпоксидные, полиэфирно-эпоксидные, акриловые порошки – краски. Они формируют поверхность любого заданного цвета, структуры, способностью отражать световые лучи. Красящий порошок наносят электростатическим или трибостатическим методом.

Электростатически частицы пигмента в воздухе (флюиды) заряжают действием электродов. Трибостатически крупинки краски заряжаются благодаря силе трения, продуцируемой специальным пистолетом. Процесс реализуют в камерах. Неиспользованный порошок собирается, возвращается в исходное место. Стадия завершается полимеризацией при высокой температуре.

Оба вида окрашивания алюминия позволяют получать цвета, соответствующие международным стандартам. Некоторые производственные требования обуславливают необходимость последовательного сочетания двух методов: анодного оксидирования и окрашивания. Количество, суть используемых методов определяются специалистами.

Любой из видов коррозии конструкций из алюминия является причиной разрушения.

Рассмотрим подробнее все способы защиты алюминия от коррозии


Можно выделить несколько видов коррозионных алюминий и его сплавов:

Алюминиевые сплавы для морской воды

В морской воде особенно высокую долговечность проявляют алюминиево-магниевые сплавы (AlMg) с содержанием магния не более 2,5 %. Из этих сплавов изготавливают корпуса судов и другие несущие конструкции. Для палубных надстроек вполне хватает коррозионной стойкости алюминиевых сплавов серии 6ххх (сплавы AlMgSi).

Аналогично бетон воздействует на алюминиевые литые детали. Это повышает адгезию между этими материалами. После того, как бетон затвердеет (высохнет), коррозии обычно уже не происходит. Однако там, где влага накапливается и сохраняется, может развиваться коррозия. Увеличенный объем продуктов коррозии может вызвать в бетоне образование трещин.

Как вода воздействует на описываемый металл?

Коррозия алюминия в воде может наступить от повреждения верхнего слоя и защитной пленки. Высокая температура жидкости способствует скорейшему разрушению металла. Если алюминий поместить в пресную воду, то коррозионные процессы практически не будут наблюдаться. Если повысить температуру воды, то изменений можно не заметить. Когда жидкость нагревается до температуры 80 градусов и выше, то металл начинает портиться.

Скорость коррозии алюминия увеличивается, если в воду попадает щелочь. Описываемый металл обладает повышенной чувствительностью к соли. Именно поэтому морская вода для него губительна. Чтобы использовать этот металл в морской воде, необходимо в жидкость добавлять магний или кремний. Если использовать лист алюминия, в составе которого есть медь, то коррозия сплава будет протекать гораздо быстрее, чем у чистого вещества.

Если лист хранится на складе, то пленка будет от 0,01 до 0,02 мкм. Если металл соприкасается с сухим кислородом, то толщина оксидной пленки на поверхности будет от 0,02 до 0,04 мкм. Если алюминий подвергают термической обработке, то толщина пленки изменяется. Она будет равна 0,1 мкм.

Анодирование

Анодированное покрытие представляет собой покрытие, которое создает на поверхности алюминия прочную пленку из оксида алюминия, которая не поддается воздействию агрессивных сред. Такая обработка позволяет создать на поверхности металла такой слой пленки, который просто не оставляет алюминию возможности контактировать с внешней средой и ограждает его от процессов окисления.

Анодированное покрытие различных цветов профилей из алюминия к содержанию ↑

Анодированное покрытие представляет собой покрытие, которое создает на поверхности алюминия прочную пленку из оксида алюминия, которая не поддается воздействию агрессивных сред. Такая обработка позволяет создать на поверхности металла такой слой пленки, который просто не оставляет алюминию возможности контактировать с внешней средой и ограждает его от процессов окисления.

Rus-npf

1. Введение

Коррозия алюминия

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al 3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.

Температура плавления алюминия – 660 °C.

Плотность алюминия – 2,6989 г/см 3 (при нормальных условиях).

Читайте также:  Виды гидроизоляционной обработки фундамента

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.

Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.

При нагревании алюминий может реагировать с некоторыми неметаллами:

2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;

4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;

2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Анодирование алюминия.

Для защиты изделий из алюминия от коррозии и укрепления структуры его поверхности применяется так называемое «оксидирование», которое создает на поверхности изделия толстую пленку. Оно может проходить в двух вариантах: химическое оксидирование в растворе хрома и анодирование с помощью анодной поляризации изделия в электролите. То есть анодирование – это процесс создания оксидной пленки на поверхности металлов и сплавов. Главная цель этой процедуры – уменьшить склонность металла к коррозии, а также улучшить внешний вид металлического изделия.

Наиболее частой технологией анодирования алюминия является так называемое сернокислое анодирование – по химическому составу анодного раствора (электролита). В результате процедуры анодирования происходит нарастание на поверхности алюминия толстого анодного покрытия с порами разного размера. Толщина покрытия и размеры пор зависят от концентрации серной кислоты в анодном электролите, температуры анодного раствора и плотности тока, поступающего через электролит на поверхность алюминия.

По своей структуре анодное покрытие состоит из пористого слоя и находящегося под ним барьерного. Толщина барьерного слоя зависит от состава электролита и технологических параметров. При анодировании барьерный слой образуется первым, и его толщина прямо зависит от величины плотности анодирования.

Чистый алюминий высшего качества анодируется лучше, чем сплавы с другими металлами. Внешний вид анодного покрытия и его свойства (износостойкость, коррозионная стойкость и т.п.) зависят как от типа алюминиевого сплава, так и от соблюдения технологии при его производстве. Размер, форма и распределение интерметаллидных (состоящих из двух и более металлов), частиц также влияют на качество анодирования. Химический состав алюминиевого сплава является особенно важным в изделиях, которые требуют блестящего анодирования, в этом случае необходимо, чтобы уровень нерастворимых частиц был как можно ниже.

Процесс анодирования состоит из трех этапов:

1. Подготовительный этап, в ходе которого алюминиевое изделие механически и электрохимически обрабатывается. Поверхность очищается, шлифуется и обезжиривается. Затем изделие помещается в щелочной раствор, для его протравливания. Последней стадией подготовки становиться погружение в кислотный раствор, где оно осветляется, после чего изделие тщательно промывается от кислоты.

2. Непосредственно этап химического анодирования алюминия. Для этого изделие подвешивают на специальные кронштейны и помещают в ванну с электролитом между двумя катодами. В качестве электролитов могут выступать растворы серной, щавелевой, хромовой и сульфосалициловой кислот, иногда с добавлением органической кислоты или соли. Серная кислота является самым распространенным электролитом, однако с его помощью не удается качественно обработать изделия с мелкими отверстиями или зазорами. Для этих целей лучше подходят хромовые кислоты. Щавелевая кислота в свою очередь создает наилучшие изоляционные покрытия разных цветов. Разные концентрации кислот и плотность тока дают разные результаты конечной продукции. Повышение температуры и понижение плотности тока дает мягкую и пористую пленку. При понижении температуры и повышении плотности тока покрытие увеличивает свою твердость. Диапазон температур в сернокислом электролите колеблется от 0 до 50 градусов по Цельсию, а диапазон плотности от 1 до 3 А/дм2 (Ампер на дециметр в квадрате). Концентрация электролита может колебаться в пределах 10-20 % от объема в зависимости от необходимости.

В процессе анодирования анодные ячейки, включая поры образуют шестигранную структуру, которая, как считают специалисты, выполняет принцип минимальности энергии и не зависит от применяемого типа электролита. Шестигранная форма имеет энергетическое происхождение.

Толщина анодного покрытия увеличивается с увеличением длительности анодирования. Однако степень роста толщины зависит от нескольких факторов, таких как тип электролита, плотность тока, длительность обработки и т.д. Первоначально происходит быстрое и постоянное увеличение фактической толщины, а затем начинается уменьшение скорости роста толщины, пока не наступит стадия, при которой толщина остается приблизительно постоянной, не смотря на продолжающуюся подачу электрического тока. Это связано с тем, что в ходе анодирования происходит как непрерывный рост толщины покрытия, так и его растворение под воздействием электролита (раствора серной кислоты).

Размеры анодных ячеек прямо зависят от параметров анодирования. С увеличением напряжения размеры анодной ячейки увеличиваются, а количество пор соответственно уменьшается. Соотношение между размером ячеек и напряжением приблизительно линейное, то есть чем больше напряжение, тем больше размеры ячейки.

3. Третьим и важнейшим этапом становится этап закрепления. Так как после анодирования поверхность изделия становится пористой и мягкой, возникает необходимость закрыть поры. Эта процедура проводится с помощью погружения изделия в нагретую пресную воду, либо с помощью обработки паром, либо специализированным раствором. Однако если изделие планируется впоследствии покрасить, то закрепление не производится, так как краска сама заполняет пустое пространство в порах.

Для цветного анодирования применяется четыре метода:

1. Пропитка пористого слоя специальными красителями (метод адсорбции). После ванны с электролитом, изделие погружают в раствор с красителем, разогретым до определенной температуры (55-75 град. по Цельсию), на некоторое время (от 5 до 30 минут), а затем дополнительно уплотняют, чтобы увеличить окрашенный слой.

2. Электрохимическое осаждение в поры различных металлов (метод электролитического окрашивания, оно же черное анодирование алюминия) – это получение сначала бесцветной анодной пленки, а затем продолжение процесса в кислом растворе солей некоторых металлов (меди, марганца, олова и т.д.). Цвет готового изделия получается от бронзового до черного.

3. Специальное легирование за счет выпадения частиц в объеме пористого слоя, но не в самих порах – метод интегрального окрашивания. При этом методе, в раствор электролита для анодирования добавляют органические соли, благодаря которым и происходит покраска изделия.

4. Электролитическое окрашивание с помощью специального легирования за счет дополнительного расширения пор вблизи их дна (метод интерференционного окрашивания). Технологически сходен с методом интегрального окрашивания, но позволяет получить большее количество оттенков, благодаря формированию специального светоотражающего слоя.

В точилках Профиль К03 анодированию в обязательном порядке подвергается рамка поворотного механизма. Эта деталь постоянно подвергается нагрузке во время заточки и трению, от перемещающихся по ней зажимов. Анодирование производится для защиты от чрезмерно быстрой выработки поверхности рамки, оно позволяет укрепить рамку повысив ее износостойкость.

1. Подготовительный этап, в ходе которого алюминиевое изделие механически и электрохимически обрабатывается. Поверхность очищается, шлифуется и обезжиривается. Затем изделие помещается в щелочной раствор, для его протравливания. Последней стадией подготовки становиться погружение в кислотный раствор, где оно осветляется, после чего изделие тщательно промывается от кислоты.

Причины коррозии алюминия

Коррозионная стойкость алюминия зависит от нескольких факторов:

  • чистоты – наличия примесей в металле;
  • воздействующей среды – алюминий может одинаково подвергаться разрушению и на чистом сельском воздухе и в промышленно загрязненных районах;
  • температуры.

Во многих случаях малоконцентрированные кислоты могут растворить алюминий. От возникновения коррозии не защищает естественная окисная пленка.

Мощные разрушители – фтор, калий, натрий. Алюминий и его сплавы корродируют при воздействии химических соединений брома и хлора, растворов извести и цемента.

Коррозия алюминия и его сплавов происходит в воде, воздухе, оксидах углерода и серы, растворах солей. Морская вода приводит к ускоренному разрушению. Алюминий считается активным металлом, но при этом отличается хорошими коррозионными свойствами.

Выделяют два основных фактора, которые влияют на интенсивность коррозийного процесса:

  • степень агрессивности воздействующей окружающей среды – влажность, загрязненность, задымленность;
  • химическая структура.

Алюминий не подвергается коррозии в чистой воде. Не влияют на защитную оксидную пленку нагревание и пар.


Алюминий не подвергается коррозии в чистой воде. Не влияют на защитную оксидную пленку нагревание и пар.

Коррозия алюминия и его сплавов. Методы борьбы и защиты алюминия от коррозии

  • Новости компании
  • Новости машиностроения
  • Новости судостроения
  • Новости военно-промышленного комплекса
  • Новости космической промышленности
  • Новости авиастроения
  • Новости строительного сектора
  • Интересные статьи
  • Технические статьи
  • Видео по сварке
  • Видео по ковке

Хотя алюминий является цветным металлом и, в сравнении с обычной сталью, стоит относительно дорого, используется он человеком достаточно широко. Применяться этот прочный и легкий материал может в быту, в строительстве, на производстве. Химическая формула алюминия в таблице Менделеева выглядит так: Al.

Подвержен ли коррозии

Ржавеет алюминий, как известно, очень медленно. По крайней мере, железо и сталь с ним в этом плане сравниться не могут. Объясняется стойкость алюминия к коррозии прежде всего с тем, что при обычных условиях на его поверхности образуется тонкая оксидная защитная пленка. В результате химическая активность алюминия резко снижается.

Факторы, влияющие на устойчивость к ржавлению

К коррозии алюминий устойчив, но в некоторых случаях он все же может начать довольно-таки быстро разрушаться из-за окисления. Происходит это обычно при повреждении по каким-либо причинам пленки или невозможности ее образования.

Чаще всего внешней тонкой защиты алюминий лишается под воздействием кислот или щелочей. Также причиной разрушения пленки могут стать и обычные механические повреждения.

Виды коррозии

После разрушения пленки Al и его сплавы начинают ржаветь, то есть саморазрушаться, как и многие другие металлы. При этом подвергаться может алюминий и коррозии:

  • Химической. В этом случае ржавление происходит в газовой среде без воды. В этом случае поверхность алюминиевого изделия разрушается равномерно по всей площади.
  • Электрохимической. Коррозия алюминия в данном случае протекает во влажной среде.
  • Газовая. Этот вид коррозии возникает тогда алюминий непосредственно контактирует с каким-нибудь химически агрессивным газом.

Уравнение коррозии алюминия (окисления кислородом) на воздухе выглядит следующим образом: 4AI+3O2=2AL2O3.

Химическая формула оксидной защитной пленки – AL2O3.

Самой устойчивой к коррозии разновидностью является технический алюминий. То есть практически чистый 90% металл. Сплавы алюминия, к сожалению, ржавлению подвержены гораздо больше. При этом считается, что меньше всего коррозийную устойчивость этого металла снижают примеси магния, а больше всего — меди.

Сплавы Mg-Al

Такие материалы широко используются в строительстве, пищевой и химической промышленности. Также их очень часто применяют в машиностроении. Считается, что неплохо подобные материалы подходят и для возведения сооружений, подвергающихся воздействию морской воды.

В том случае, если магния в состав сплава входит не более 3%, антикоррозийные свойства он будет иметь практически такие же, как и технический алюминий. Магний в таком сплаве находится в твердом растворе и в виде частиц Al8Mg5, равномерно распределенных по всей матрице.

Если этого металла в сплаве содержится больше 3%, частицы Al8Mg5 начинают выпадать по большей мере не внутри зерен, а по их границам. А это, в свою очередь, крайне негативно сказывается на антикоррозийных свойствах материала. То есть изделие становится гораздо менее устойчивым к ржавлению.

Сплавы с магнием и кремнием

Такие материалы чаще всего применяются в машиностроении и в строительстве. Mg2Si делают сплавы этой разновидности очень прочными. Иногда составляющим подобных элементов является и медь. Ее также вводят в сплав для упрочения. Однако добавляют медь в такие материалы в очень небольших количествах. Иначе антикоррозийные свойства алюминиевого сплава могут сильно понизиться. Межкристаллическое ржавление в них начинается уже при добавлении свыше 0.5% меди.

Также склонность к коррозии у таких материалов может возрастать при неоправданном увеличении количества входящего в их состав кремния. Это вещество добавляют в алюминиевые сплавы обычно в таких пропорциях, чтобы после образования Mg2Si не оставалось ничего лишнего. Кремний в чистом виде содержат лишь некоторые материалы этой разновидности.

Коррозия алюминия и его сплавов с цинком

Ржавеет Al, как уже упоминалось, медленнее, чем его сплавы. Касается это в том числе и материалов группы Al-Zn. Такие сплавы очень востребованы, к примеру, в самолетостроении. Некоторые их разновидности могут содержать медь, другие нет. При этом первый тип сплавов, конечно же, является к коррозии более устойчивым. В этом плане материалы Al-Zn сравнимы с магниево-алюминиевыми.

Сплавы этой разновидности с добавлением меди проявляют признаки некоторой неустойчивости к ржавлению. Но при этом разрушаются из-за коррозии они все же медленнее, чем изготовленные с использованием магния и Cu.

Основные способы борьбы с ржавлением

Конечно же, снизить скорость коррозии алюминия и его сплавов можно в том числе и искусственным путем. Способов защиты таких материалов от ржавления существует всего несколько.

К примеру, исключить контакт этого металла и его сплавов с окружающей средой можно путем окрашивания ЛКМ. Также для защиты алюминия от ржавления часто применяется электрохимический способ. В этом случае материал дополнительно покрывается слоем более активного металла.

Еще один способ защиты Al от ржавления — это высоковольтное оксидирование. Также для предотвращения коррозии алюминия может использоваться методика порошкового окрашивания. Применяют для его защиты, конечно же, и ингибиторы ржавления.

Как производится оксидирование

С использованием такой методики алюминий и его сплавы от коррозии защищают достаточно часто. Выполняют оксидирование под напряжением в 250 В. При применении такой методики на поверхности металла или его сплава образуется прочная оксидная пленка.

Воздействие на материал током в данном случае производится с использованием водяного охлаждения. При низких температурах из-за напряжения пленка на поверхности алюминия образуется очень прочная и плотная. Если же процедура производится при высоких температурах, она получается достаточно рыхлой. Обработанный в такой среде алюминий нуждается в дополнительной защите от контакта с воздухом (окрашивании).

Изделие при использовании такой технологии сначала обезжиривают в растворе щавелевой кислоты. Затем алюминий или сплав опускают в щелочь. Далее, на металл воздействуют током. На заключительном этапе, если оксидирование проводилось при достаточно высокой температуре, материал дополнительно окрашивают с погружением в растворы солей, а затем обрабатывают паром.

Использование ЛКМ

Этот способ, как и оксидирование, применяется для защиты алюминия от ржавления достаточно часто. Окрашиваться такой материал может по сухой, влажной методике или порошковым способом. В первом случае алюминий сначала обрабатывают составом, содержащим цинк и стронций. Далее, на металл наносят собственно сам ЛКМ.

При использовании порошкового способа рабочую поверхность предварительно обезжиривают путем погружения в щелочные или кислотные растворы. Далее, на изделие наносятся хроматные, циркониевые, фосфатные или титановые соединения.

Использование изоляторов

Очень часто стимуляторами начала коррозийных процессов в алюминии и его сплавах становятся другие металлы. Так происходит обычно при прямом контакте изделий или их частей. Чтобы предотвратить ржавление алюминия, в этом случае используются специальные изоляторы. Изготавливаться такие прокладки могут из резины, паронита, битума. Также в данном случае могут использовать лаки и краски. Еще одним способом защитить алюминий от коррозии при контакте с другими материалами является покрытие его поверхности кадмием.

Читайте также:  Выбор защитного покрытия для деревянного пола на даче

В особенности важно обеспечить изоляцию алюминиевых деталей в разного рода механизмах и узлах от прямого соприкосновения с медью. Также считается, что защищать от контакта с другими металлами следует не только собственно детали, изготовленные из Al. В плане устойчивости к коррозии железо алюминию, как и сталь, к примеру, сильно уступает. Поэтому такие металлы и некоторые другие часто защищают особым образом. Материалы просто покрывают защитным алюминиевым слоем. От контакта с медью или другими металлами, конечно же, нужно беречь и такие изделия.

Советуем подписаться на наши страницы в социальных сетях: Facebook | Вконтакте | Twitter | Google+ | Одноклассники

После разрушения пленки Al и его сплавы начинают ржаветь, то есть саморазрушаться, как и многие другие металлы. При этом подвергаться может алюминий и коррозии:

3 Способы защиты алюминия и его сплавов от коррозии

Коррозия – это самопроизвольное разрушение металлов под воздействием химического или физико-химического влияния окружающей среды. В широком понимании, коррозии подвергаются не только металлы, но и любые материалы, будь то бетон, пластмасса, резина или керамика.

Возникновению коррозии в значительной степени способствуют главным образом вода, а также загрязнение воздуха пылью, солями и другими газами и температурные колебания.

Скорость коррозии зависит от некоторых факторов: природы металла, окружающей его атмосферы, влажности воздуха.

Для защиты от коррозии часто применяется нанесение металлических или неметаллических покрытий. Неметаллическими защитными покрытиями могут выступать различные смазки, пасты, лакокрасочные материалы. Часто в их состав дополнительно вводят ингибиторы, пигменты, пассивирующие поверхность (например, цинк-хроматный пигмент для стали). Иногда поверхность превращают в труднорастворимый оксид или фосфат, обладающий защитными свойствами. Металлическими покрытиями служат цинковые, никелевые, многослойные.

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д.

Основными мероприятиями, направленными на сохранение агрегатов и деталей самолетов от поражения коррозией, являются:

— содержание металлической поверхности в чистоте, так как грязь и пыль в сочетании с влагой, и особенно нефтепродукты, разрушают защитные покрытия и вызывают коррозию;

— предохранение и сохранение защитных покрытий от нанесения механи-

ческих повреждений (царапин, вмятин и др.).

Правильный уход за лакокрасочными, анодированными и другими защитными покрытиями обшивки самолета является одним из условий обеспечения длительного срока службы самолета и сохранения его летных качеств.

Особое внимание при эксплуатации самолетов необходимо обращать на сохранность и своевременное возобновление бесцветного лакового покрытия анодированной обшивки самолета.

В исследовательской части рассмотрены три варианта улучшения антикоррозионных свойств алюминия и его сплавов за счёт применения специальных покрытий.

Электролит анодирования алюминия и его сплавов

Изобретение относится к области получения защитных оксидных пленок на алюминии и его сплавах при сернокислотном анодировании. Технический результат: повышение антикоррозионных свойств анодных оксидных покрытий на алюминии и его сплавах как при получении их в сернокислотных растворах, так и при последующей эксплуатации в средах с повышенной концентрацией хлоридов.

Известен сернокислый электролит анодирования алюминия, содержащий 300-380 г/л серной кислоты (Л.И.Каданер “Справочник по гальваностегии”, Киев, “Техника”, 1976 г. с.193). Однако для получения качественных пленок в этом электролите его необходимо охладить (до -5°С) и поддерживать высокое напряжение (до 65 В).

Для решения поставленной задачи предлагается вводить в сернокислотный электролит анодирования две добавки органических веществ, а именно 10-метил-9-(п-аминофенил)-акридиний иодид (или хлорида) и N,N 1 -бис(о-бромбензоил)-фенилсульфинамидина при следующем соотношении компонентов 180-240 г/л серная кислота, 10-метил-9-(п-аминофенил)-акридиний иодид(хлорид) – 0,5-1,5, N,N 1 -бис(о-бромбензоил)-фенилсульфинамидин – 0,3-1,0.

При анодировании добавки адсорбируются растущим анодным оксидным слоем и тормозят коррозионное растравливание пленки и металла как при анодировании, так и при эксплуатации анодированных деталей. Повышение защитного эффекта особенно заметно при наличии в коррозионной среде хлорид-ионов. Снижение концентрации добавок в электролите приводит к ослаблению защитного действия оксидных покрытий. Верхний концентрационный предел обусловлен растворимостью добавок.

Испытания, проведенные на образцах сплава АМГ, показали: во всех случаях оксидные слои, полученные в предлагаемом электролите, имели более высокое защитное действие, чем при анодировании в стандартном электролите, а именно:

– на оксидных покрытиях, полученных в предлагаемом электролите, время капельной пробы значительно выше, чем для получения в известном электролите без добавок.

Этот вывод относится как к электролитам, содержащим хлорид-ионы, так и без них.

– повышенное защитное действие оксидной пленки обнаружилось на образцах, анодированных в предлагаемом электролите, при испытаниях в камере солевого тумана.

– при испытании по ГОСТ 9.031-74 образцы, анодированные в известном электролите, не выдержали испытания, на них обнаружены области явных коррозионных повреждений. В то же время, образцы, которые анодировались в предлагаемом электролите, показали 100%-ную устойчивость.

– заслуживает внимания и тот факт, что образцы, анодированные в стандартном электролите, обнаружили пониженную коррозионную стойкость по сравнению с образцами из предлагаемого электролита (по результатам испытаний в камере солевого тумана и по капельной пробе).

– следует особо отметить, что наиболее высокие показатели защитных свойств оксидных пленок получены в электролите, где присутствуют обе органические добавки: производное акридина и производное фенилсульфинамида.

Информация о добавке содержится в статье О.Н.Чупахина с сотрудниками, ДАН СССР,1969, том 188, №2, с.376-378 и в статье А.В.Харченко и др.,”Журнал органической химии”, 1980, т.16, вып.4, с.754-758.

Оксидное композиционное покрытие на алюминии и его сплавах

Изобретение относится к гальванотехнике, а именно к способам получения композиционного покрытия анодным оксидированием алюминия и его сплавов. Покрытие получают оксидированием в электролите, содержащем ультрадисперсные алмазы размером 0,001 – 0,120 мкм в количестве 0,05 – 56 г/л. Способ позволяет повысить твердость, износостойкость, антифрикционные свойства при малом расходе композиционного материала по простой технологии.

Поскольку процесс оксидирования протекает за счет металла матрицы (детали), необходимым условием роста пленки является возникновение пор в результате взаимодействия оксидной пленки с электролитом (чаще всего – с кислотой) и протекание тока.

Оксидное покрытие состоит из двух слоев: пористого толстого внешнего слоя и внутреннего тонкого слоя (барьерный слой).

Неорганическое оксидное композиционное покрытие (далее – композиционное покрытие) алюминия и его сплавов (далее – алюминия) представляет собой неметаллическую матрицу (пористую пленку, в основном, из Al2O3) – своеобразный каркас, заполненный удерживаемыми в ее порах частицами солей, оксидов металлов, металлов, неметаллов. Наполнение пленки осуществляется за счет адсорбционных, физико-химических и химических сил. Такие покрытия обладают повышенными физико-механическими характеристиками, износостойкостью, повышенными антикоррозионными и электрофизическими свойствами, улучшенной цветовой гаммой.

В качестве электролитов анодного оксидирования используют, как правило, водные растворы серной, хромовой, щавелевой кислот, их смеси, щелочной раствор полибората натрия.

Примененные в данном изобретении ультрадисперсные алмазы (УДА) или иначе кластерные алмазы представляют собой частицы, по форме близкие к сферическим или овальным, не имеющие острых кромок (неабразивные). Такие алмазы образуют седиментационно и коагуляционно устойчивые системы в электролитах как при рабочей концентрации компонентов, так и при повышенной (в концентратах электролитов).

В настоящее время синтез УДА производится чаще всего путем подрыва специально подготовленных зарядов из смесевых составов тротил-гексоген во взрывных камерах, наполненных неокислительной средой. Получаемая при этом алмазная шихта (смесь алмазов с неалмазными формами углерода) подвергается химической очистке, самой совершенной из которых является обработка алмазной шихты в среде азотной кислоты при высоких температурах и давлении с последующей промывкой.

УДА имеют классическую кубическую (алмазную) кристаллическую решетку с большими поверхностными дефектами, что обусловливает значительную поверхностную энергию таких кристаллов. Избыточная энергия поверхности частиц УДА компенсируется путем образования многочисленных поверхностных групп, образуя на поверхности оболочку (“бахрому”) из химически связанных с кристаллом гидроксильных, карбонильных, карбоксильных, нитрильных, хиноидных и прочих групп, представляющих собой различные устойчивые сочетания углерода с другими элементами используемых ВВ – кислородом, азотом и водородом.

Существовать без такой оболочки в обычных условиях микрокристаллиты УДА не могут – это неотъемлемая часть кластерных нано-алмазов, в значительной мере определяющая их свойства.

Т. о. , УДА сочетают в себе парадоксальное начало – сочетание одного из самых инертных и твердых веществ в природе – алмаза (ядро) с достаточно химически активной оболочкой в виде различных функциональных групп, способных участвовать в различных химических реакциях. Кроме того, такие кристаллы алмаза несмотря на компенсацию части неспаренных электронов за счет образования поверхностных функциональных групп имеют еще достаточно большой их избыток на поверхности, т.е. каждый кристаллик алмаза представляет собой, по сути, множественный радикал.

Все это множество разнородных свойств определяет их необычное поведение в различных процессах, в том числе в анодном оксидировании алюминия.

Попытки введения в электролиты оксидирования твердых, не растворяющихся в воде ультрадисперсных частиц двуокиси кремния, нитридов металлов, не привели к позитивному изменению свойств поверхностного оксидного слоя.

Напротив, УДА, имеющие отрицательный заряд, в электролите при наложении ЭДС устремляются к аноду (алюминий и его сплавы) и внедряются в образующиеся при окислении поверхности поры, удерживаясь там после разрядки не только механически, но и с помощью Ван-дер-Ваальсовых и других физико-химических сил. При этом наполнение образуется настолько плотное, что привес оксидной пленки увеличивается в 2-3,5 раза (при одинаковой толщине – без и с использованием УДА). Износостойкость такой пленки возрастает в 10-13 раз, существенно увеличиваются коррозионная стойкость и электроизоляционность.

Т. о. , использование кластерных алмазов для получения анодных оксидных пленок на алюминии и сплавах приводит к одновременному наполнению пленок нерастворимыми УДА непосредственно во время процесса электролиза и существенному улучшению свойств получаемого неметаллического неорганического композиционного покрытия, а именно:

– кластерные алмазы образуют устойчивые дисперсии в электролитах оксидирования;

– малая масса (малая инерционность) алмазных кластеров обеспечивает эффективный массоперенос частиц алмаза к оксидируемой поверхности, это позволяет работать при высоких плотностях тока;

– кластерные алмазы благодаря своей высокой физико-химической активности обеспечивают глубокое проникновение в поры оксидной пленки и плотную упаковку своих частиц, в результате чего образуется высокодисперсная структура композиционного покрытия с повышенной микротвердостью, износостойкостью;

– наполнение оксидной пленки УДА приводит к возрастанию адгезии к металлической подложке и когезии пленки;

– повышение качества покрытия достигается, в том числе, при относительно малом, а самое главное, регулируемом содержании алмазов в покрытии 0,2 – 10 мас.%, что делает процесс экономичным;

– композиционное оксидно-алмазное покрытие имеет высокую коррозионную стойкость;

– эффективный массоперенос алмазов к пористой анодной пленке и внутри ее обеспечивает равномерное наполнение ими пленки, в том числе на эквипотенциальных поверхностях.

Комплекс свойств оксидно-алмазного покрытия, получаемого по предлагаемому способу, и простота процесса делают такой способ конкурентноспособным

с любым из известных способов получения наполненных оксидных пленок.

Водно-дисперсионная антикоррозионная грунт-эмаль

Изобретение относится к водно-дисперсионным лакокрасочным материалам, предназначенным для защиты от коррозии металлических поверхностей, эксплуатируемых в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности. Может использоваться как грунтовка и как самостоятельное лакокрасочное покрытие. Грунт-эмаль включает акриловую дисперсию, антикоррозионные пигменты и наполнители, диспергатор, загуститель и воду. Для повышения антикоррозионных свойств покрытия в составе грунт-эмали используют водорастворимый ингибитор коррозии – смесь калий октадеканоата, трикалий фосфата, 2,2′,2″-Нитрилотриэтанола и поверхностно-активное вещество – техническая смесь полиэтиленгликолевых эфиров моноалкилфенолов, улучшающая смачиваемость и адгезию лакокрасочного покрытия к металлической поверхности. Технический результат – повышение экологической безопасности при проведении окрасочных работ и высокие антикоррозионные свойства покрытия при эксплуатации в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности.

Задачей предлагаемого изобретения является создание малотоксичной наноингибированной водно-дисперсионной антикоррозионной грунт-эмали с высоким уровнем противокоррозионных свойств в агрессивных атмосферных условиях с повышенной влажностью.

Поставленная задача достигается тем, что в состав водно-дисперсионной грунт-эмали взамен фосфатно-кальциевых кронов вводятся, наряду с малотоксичным фосфатом цинка, водорастворимый органический ингибитор коррозии пассивирующего типа, не содержащий соединения хрома, и поверхностно-активное вещество, обеспечивающие адгезионно-ингибирующее действие на металлическую поверхность.

Новизна технического решения определяется подбором компонентов в оптимальных количествах, способных при высыхании лакокрасочного покрытия формировать на поверхности металла тонкие наноразмерные пленки комплексных соединений, улучшающих адгезию покрытия к металлу и его противокоррозионные свойства.

Предлагаемая водно-дисперсионная антикоррозионная грунт-эмаль по сравнению с прототипом имеет лучшие антикоррозионные свойства. Грунт-эмаль не содержит в своем составе соединений хрома. Использование грунт-эмали по заявленному изобретению для защиты крупногабаритных металлоконструкций обеспечивает высокие антикоррозионные свойства покрытия в агрессивных атмосферных условиях и экологическую безопасность при проведении окрасочных работ.

Рассмотрев плюсы и минусы представленных вариантов защиты от коррозии алюминия и его сплавов, можно сделать следующий вывод: наиболее дешёвыми и менее трудоёмкими в производстве являются способы использования электролита анодирования и водно-дисперсной грунт-эмали. Они в значительной мере улучшают антикоррозионные свойства, в сравнении с известными покрытиями, алюминия и его сплавов.

Однако наиболее перспективным является получение оксидного композиционного покрытия с использованием УДА. Помимо улучшения антикоррозионных свойств, повышается износостойкость, электрофизические свойства. Использование этого открытия может значительно увеличить время между сроками ремонта планера ЛА.

Примененные в данном изобретении ультрадисперсные алмазы (УДА) или иначе кластерные алмазы представляют собой частицы, по форме близкие к сферическим или овальным, не имеющие острых кромок (неабразивные). Такие алмазы образуют седиментационно и коагуляционно устойчивые системы в электролитах как при рабочей концентрации компонентов, так и при повышенной (в концентратах электролитов).

3 Способы защиты алюминия и его сплавов от коррозии

Коррозия – это самопроизвольное разрушение металлов под воздействием химического или физико-химического влияния окружающей среды. В широком понимании, коррозии подвергаются не только металлы, но и любые материалы, будь то бетон, пластмасса, резина или керамика.

Возникновению коррозии в значительной степени способствуют главным образом вода, а также загрязнение воздуха пылью, солями и другими газами и температурные колебания.

Скорость коррозии зависит от некоторых факторов: природы металла, окружающей его атмосферы, влажности воздуха.

Для защиты от коррозии часто применяется нанесение металлических или неметаллических покрытий. Неметаллическими защитными покрытиями могут выступать различные смазки, пасты, лакокрасочные материалы. Часто в их состав дополнительно вводят ингибиторы, пигменты, пассивирующие поверхность (например, цинк-хроматный пигмент для стали). Иногда поверхность превращают в труднорастворимый оксид или фосфат, обладающий защитными свойствами. Металлическими покрытиями служат цинковые, никелевые, многослойные.

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д.

Основными мероприятиями, направленными на сохранение агрегатов и деталей самолетов от поражения коррозией, являются:

— содержание металлической поверхности в чистоте, так как грязь и пыль в сочетании с влагой, и особенно нефтепродукты, разрушают защитные покрытия и вызывают коррозию;

Читайте также:  Уникальные методы состаривания вагонки своими руками

— предохранение и сохранение защитных покрытий от нанесения механи-

ческих повреждений (царапин, вмятин и др.).

Правильный уход за лакокрасочными, анодированными и другими защитными покрытиями обшивки самолета является одним из условий обеспечения длительного срока службы самолета и сохранения его летных качеств.

Особое внимание при эксплуатации самолетов необходимо обращать на сохранность и своевременное возобновление бесцветного лакового покрытия анодированной обшивки самолета.

В исследовательской части рассмотрены три варианта улучшения антикоррозионных свойств алюминия и его сплавов за счёт применения специальных покрытий.

Электролит анодирования алюминия и его сплавов

Изобретение относится к области получения защитных оксидных пленок на алюминии и его сплавах при сернокислотном анодировании. Технический результат: повышение антикоррозионных свойств анодных оксидных покрытий на алюминии и его сплавах как при получении их в сернокислотных растворах, так и при последующей эксплуатации в средах с повышенной концентрацией хлоридов.

Известен сернокислый электролит анодирования алюминия, содержащий 300-380 г/л серной кислоты (Л.И.Каданер “Справочник по гальваностегии”, Киев, “Техника”, 1976 г. с.193). Однако для получения качественных пленок в этом электролите его необходимо охладить (до -5°С) и поддерживать высокое напряжение (до 65 В).

Для решения поставленной задачи предлагается вводить в сернокислотный электролит анодирования две добавки органических веществ, а именно 10-метил-9-(п-аминофенил)-акридиний иодид (или хлорида) и N,N 1 -бис(о-бромбензоил)-фенилсульфинамидина при следующем соотношении компонентов 180-240 г/л серная кислота, 10-метил-9-(п-аминофенил)-акридиний иодид(хлорид) – 0,5-1,5, N,N 1 -бис(о-бромбензоил)-фенилсульфинамидин – 0,3-1,0.

При анодировании добавки адсорбируются растущим анодным оксидным слоем и тормозят коррозионное растравливание пленки и металла как при анодировании, так и при эксплуатации анодированных деталей. Повышение защитного эффекта особенно заметно при наличии в коррозионной среде хлорид-ионов. Снижение концентрации добавок в электролите приводит к ослаблению защитного действия оксидных покрытий. Верхний концентрационный предел обусловлен растворимостью добавок.

Испытания, проведенные на образцах сплава АМГ, показали: во всех случаях оксидные слои, полученные в предлагаемом электролите, имели более высокое защитное действие, чем при анодировании в стандартном электролите, а именно:

– на оксидных покрытиях, полученных в предлагаемом электролите, время капельной пробы значительно выше, чем для получения в известном электролите без добавок.

Этот вывод относится как к электролитам, содержащим хлорид-ионы, так и без них.

– повышенное защитное действие оксидной пленки обнаружилось на образцах, анодированных в предлагаемом электролите, при испытаниях в камере солевого тумана.

– при испытании по ГОСТ 9.031-74 образцы, анодированные в известном электролите, не выдержали испытания, на них обнаружены области явных коррозионных повреждений. В то же время, образцы, которые анодировались в предлагаемом электролите, показали 100%-ную устойчивость.

– заслуживает внимания и тот факт, что образцы, анодированные в стандартном электролите, обнаружили пониженную коррозионную стойкость по сравнению с образцами из предлагаемого электролита (по результатам испытаний в камере солевого тумана и по капельной пробе).

– следует особо отметить, что наиболее высокие показатели защитных свойств оксидных пленок получены в электролите, где присутствуют обе органические добавки: производное акридина и производное фенилсульфинамида.

Информация о добавке содержится в статье О.Н.Чупахина с сотрудниками, ДАН СССР,1969, том 188, №2, с.376-378 и в статье А.В.Харченко и др.,”Журнал органической химии”, 1980, т.16, вып.4, с.754-758.

Оксидное композиционное покрытие на алюминии и его сплавах

Изобретение относится к гальванотехнике, а именно к способам получения композиционного покрытия анодным оксидированием алюминия и его сплавов. Покрытие получают оксидированием в электролите, содержащем ультрадисперсные алмазы размером 0,001 – 0,120 мкм в количестве 0,05 – 56 г/л. Способ позволяет повысить твердость, износостойкость, антифрикционные свойства при малом расходе композиционного материала по простой технологии.

Поскольку процесс оксидирования протекает за счет металла матрицы (детали), необходимым условием роста пленки является возникновение пор в результате взаимодействия оксидной пленки с электролитом (чаще всего – с кислотой) и протекание тока.

Оксидное покрытие состоит из двух слоев: пористого толстого внешнего слоя и внутреннего тонкого слоя (барьерный слой).

Неорганическое оксидное композиционное покрытие (далее – композиционное покрытие) алюминия и его сплавов (далее – алюминия) представляет собой неметаллическую матрицу (пористую пленку, в основном, из Al2O3) – своеобразный каркас, заполненный удерживаемыми в ее порах частицами солей, оксидов металлов, металлов, неметаллов. Наполнение пленки осуществляется за счет адсорбционных, физико-химических и химических сил. Такие покрытия обладают повышенными физико-механическими характеристиками, износостойкостью, повышенными антикоррозионными и электрофизическими свойствами, улучшенной цветовой гаммой.

В качестве электролитов анодного оксидирования используют, как правило, водные растворы серной, хромовой, щавелевой кислот, их смеси, щелочной раствор полибората натрия.

Примененные в данном изобретении ультрадисперсные алмазы (УДА) или иначе кластерные алмазы представляют собой частицы, по форме близкие к сферическим или овальным, не имеющие острых кромок (неабразивные). Такие алмазы образуют седиментационно и коагуляционно устойчивые системы в электролитах как при рабочей концентрации компонентов, так и при повышенной (в концентратах электролитов).

В настоящее время синтез УДА производится чаще всего путем подрыва специально подготовленных зарядов из смесевых составов тротил-гексоген во взрывных камерах, наполненных неокислительной средой. Получаемая при этом алмазная шихта (смесь алмазов с неалмазными формами углерода) подвергается химической очистке, самой совершенной из которых является обработка алмазной шихты в среде азотной кислоты при высоких температурах и давлении с последующей промывкой.

УДА имеют классическую кубическую (алмазную) кристаллическую решетку с большими поверхностными дефектами, что обусловливает значительную поверхностную энергию таких кристаллов. Избыточная энергия поверхности частиц УДА компенсируется путем образования многочисленных поверхностных групп, образуя на поверхности оболочку (“бахрому”) из химически связанных с кристаллом гидроксильных, карбонильных, карбоксильных, нитрильных, хиноидных и прочих групп, представляющих собой различные устойчивые сочетания углерода с другими элементами используемых ВВ – кислородом, азотом и водородом.

Существовать без такой оболочки в обычных условиях микрокристаллиты УДА не могут – это неотъемлемая часть кластерных нано-алмазов, в значительной мере определяющая их свойства.

Т. о. , УДА сочетают в себе парадоксальное начало – сочетание одного из самых инертных и твердых веществ в природе – алмаза (ядро) с достаточно химически активной оболочкой в виде различных функциональных групп, способных участвовать в различных химических реакциях. Кроме того, такие кристаллы алмаза несмотря на компенсацию части неспаренных электронов за счет образования поверхностных функциональных групп имеют еще достаточно большой их избыток на поверхности, т.е. каждый кристаллик алмаза представляет собой, по сути, множественный радикал.

Все это множество разнородных свойств определяет их необычное поведение в различных процессах, в том числе в анодном оксидировании алюминия.

Попытки введения в электролиты оксидирования твердых, не растворяющихся в воде ультрадисперсных частиц двуокиси кремния, нитридов металлов, не привели к позитивному изменению свойств поверхностного оксидного слоя.

Напротив, УДА, имеющие отрицательный заряд, в электролите при наложении ЭДС устремляются к аноду (алюминий и его сплавы) и внедряются в образующиеся при окислении поверхности поры, удерживаясь там после разрядки не только механически, но и с помощью Ван-дер-Ваальсовых и других физико-химических сил. При этом наполнение образуется настолько плотное, что привес оксидной пленки увеличивается в 2-3,5 раза (при одинаковой толщине – без и с использованием УДА). Износостойкость такой пленки возрастает в 10-13 раз, существенно увеличиваются коррозионная стойкость и электроизоляционность.

Т. о. , использование кластерных алмазов для получения анодных оксидных пленок на алюминии и сплавах приводит к одновременному наполнению пленок нерастворимыми УДА непосредственно во время процесса электролиза и существенному улучшению свойств получаемого неметаллического неорганического композиционного покрытия, а именно:

– кластерные алмазы образуют устойчивые дисперсии в электролитах оксидирования;

– малая масса (малая инерционность) алмазных кластеров обеспечивает эффективный массоперенос частиц алмаза к оксидируемой поверхности, это позволяет работать при высоких плотностях тока;

– кластерные алмазы благодаря своей высокой физико-химической активности обеспечивают глубокое проникновение в поры оксидной пленки и плотную упаковку своих частиц, в результате чего образуется высокодисперсная структура композиционного покрытия с повышенной микротвердостью, износостойкостью;

– наполнение оксидной пленки УДА приводит к возрастанию адгезии к металлической подложке и когезии пленки;

– повышение качества покрытия достигается, в том числе, при относительно малом, а самое главное, регулируемом содержании алмазов в покрытии 0,2 – 10 мас.%, что делает процесс экономичным;

– композиционное оксидно-алмазное покрытие имеет высокую коррозионную стойкость;

– эффективный массоперенос алмазов к пористой анодной пленке и внутри ее обеспечивает равномерное наполнение ими пленки, в том числе на эквипотенциальных поверхностях.

Комплекс свойств оксидно-алмазного покрытия, получаемого по предлагаемому способу, и простота процесса делают такой способ конкурентноспособным

с любым из известных способов получения наполненных оксидных пленок.

Водно-дисперсионная антикоррозионная грунт-эмаль

Изобретение относится к водно-дисперсионным лакокрасочным материалам, предназначенным для защиты от коррозии металлических поверхностей, эксплуатируемых в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности. Может использоваться как грунтовка и как самостоятельное лакокрасочное покрытие. Грунт-эмаль включает акриловую дисперсию, антикоррозионные пигменты и наполнители, диспергатор, загуститель и воду. Для повышения антикоррозионных свойств покрытия в составе грунт-эмали используют водорастворимый ингибитор коррозии – смесь калий октадеканоата, трикалий фосфата, 2,2′,2″-Нитрилотриэтанола и поверхностно-активное вещество – техническая смесь полиэтиленгликолевых эфиров моноалкилфенолов, улучшающая смачиваемость и адгезию лакокрасочного покрытия к металлической поверхности. Технический результат – повышение экологической безопасности при проведении окрасочных работ и высокие антикоррозионные свойства покрытия при эксплуатации в агрессивных атмосферных условиях, в том числе в условиях повышенной влажности.

Задачей предлагаемого изобретения является создание малотоксичной наноингибированной водно-дисперсионной антикоррозионной грунт-эмали с высоким уровнем противокоррозионных свойств в агрессивных атмосферных условиях с повышенной влажностью.

Поставленная задача достигается тем, что в состав водно-дисперсионной грунт-эмали взамен фосфатно-кальциевых кронов вводятся, наряду с малотоксичным фосфатом цинка, водорастворимый органический ингибитор коррозии пассивирующего типа, не содержащий соединения хрома, и поверхностно-активное вещество, обеспечивающие адгезионно-ингибирующее действие на металлическую поверхность.

Новизна технического решения определяется подбором компонентов в оптимальных количествах, способных при высыхании лакокрасочного покрытия формировать на поверхности металла тонкие наноразмерные пленки комплексных соединений, улучшающих адгезию покрытия к металлу и его противокоррозионные свойства.

Предлагаемая водно-дисперсионная антикоррозионная грунт-эмаль по сравнению с прототипом имеет лучшие антикоррозионные свойства. Грунт-эмаль не содержит в своем составе соединений хрома. Использование грунт-эмали по заявленному изобретению для защиты крупногабаритных металлоконструкций обеспечивает высокие антикоррозионные свойства покрытия в агрессивных атмосферных условиях и экологическую безопасность при проведении окрасочных работ.

Рассмотрев плюсы и минусы представленных вариантов защиты от коррозии алюминия и его сплавов, можно сделать следующий вывод: наиболее дешёвыми и менее трудоёмкими в производстве являются способы использования электролита анодирования и водно-дисперсной грунт-эмали. Они в значительной мере улучшают антикоррозионные свойства, в сравнении с известными покрытиями, алюминия и его сплавов.

Однако наиболее перспективным является получение оксидного композиционного покрытия с использованием УДА. Помимо улучшения антикоррозионных свойств, повышается износостойкость, электрофизические свойства. Использование этого открытия может значительно увеличить время между сроками ремонта планера ЛА.

Задачей предлагаемого изобретения является создание малотоксичной наноингибированной водно-дисперсионной антикоррозионной грунт-эмали с высоким уровнем противокоррозионных свойств в агрессивных атмосферных условиях с повышенной влажностью.

Спасти алюминий

Современное автомобилестроение немыслимо без использования алюминиевых материалов. Далее мы будем использовать термин «алюминий», подразумевая не чистый металл, а конструкционные сплавы на его основе.

Первые автомобили Land Rover имели алюминиевые кузова, а множество Defender со стальной рамой и алюминиевыми панелями и сейчас колесит по дорогам всего мира. Многие модели Audi, Jaguar, Volvo, BMW, пикапы Mazda и других авто имеют детали из алюминия. И уж конечно, системы охлаждения двигателя и кондиционирования без алюминия немыслимы.

«Алюминий не ржавеет» – эту фразу мы помним со школы. А еще нам говорили, что на воздухе изделия из алюминиевых сплавов самопроизвольно покрываются тончайшей оксидной пленкой Al2O3 – она-то и предохраняет их от дальнейших коррозионных атак. Поэтому хозяйки пользуются алюминиевой посудой десятилетиями.

Авиационные материалы для защиты алюминиевых деталей, прототипы Dinitrol 713 IQ

Все верно. Но в машиностроении картина гораздо сложнее. Вибрации, перепады температур, влажная и химически агрессивная среда (вспомним хотя бы солевые растворы на дорогах) – эти и другие факторы повреждают «природную» защитную пленку и препятствуют ее восстановлению.

В местах контакта алюминиевого сплава со сталью (а в большинстве конструкций это неизбежно) возникают гальванические пары. Поскольку алюминий более активный металл, чем железо, электрохимическая коррозия разъедает именно его. Так что алюминиевая трубка со стальным штуцером не такая уж безобидная вещь. Гальванические пары образуются и в зонах сварных швов. А вслед за электрохимической коррозией приходит межкристаллитная, разрушающая границы зерен металла.

Dinitrol 713 IQ создает легкую прозрачную пленку толщиной всего 15 мкм, которая прекрасно пропускает тепло, не снижая эффективности теплообменника

Главная опасность межкристаллитной коррозии в том, что она существенно снижает прочность и другие механические характеристики изделия при неизменном внешнем виде. А нагрузи деталь чуть сильнее – рассыплется в порошок.

К сожалению, в данном случае практика подтверждает теорию. Ежегодно дилерские сервисы меняют множество теплообменников, изготовленных из «крылатого металла».

Препараты для защиты авиационных сплавов маркируются индексом AV, например, AV‑15. В Швеции их применяли для антикоррозионной защиты радиаторов автомобилей Mercedes. Так сугубо авиационный состав приобрел автомобильный опыт. Защита оказалась настолько эффективной, что на основе AV‑15 был создан препарат Dinitrol 713 IQ – специальный антикор для автомобильных узлов и деталей из алюминия. Впрочем, он умеет защищать и медь, и бронзу, и латунь, и нержавеющую сталь, которая на самом деле тоже не вечна.

«Семьсот тринадцатый» перенял все достоинства «летающего брата» AV‑15, а именно:

– уникальную способность беречь алюминиевые сплавы (авиация!), что достигается за счет особых ингибиторов;

– создавать на поверхности очень легкую (снова авиация!) и тонкую прозрачную пленку – ее толщина всего 15 мкм, и, кстати, она прекрасно пропускает тепло, не снижая эффективности защищаемого теплообменника;

– технологичность нанесения (опять же авиация!).

Говоря о технологичности, подчеркнем, что материал Dinitrol 713 IQ – так называемый одношаговый, не требующий предварительного грунтования. Он «сам себе режиссер»: проникает во все щели и прочие труднодоступные участки конструкции и обеспечивает собственную адгезию. Наносится с помощью кисти, распылением из пистолета или же окунанием.

При необходимости ремонта системы кондиционирования пленка Dinitrol 713 IQ смывается горячей водой под давлением – для этого достаточно обычного моечного аппарата. А при эксплуатации автомобиля защитную пленку рекомендуется регулярно обновлять, например, перед каждой зимой.

Теперь слово за мастерами станций технического обслуживания. Если они вооружатся Dinitrol 713 IQ, число поломок кондиционеров пойдет на убыль. А народ быстро сообразит, что лучше заплатить за обработку, чем менять дорогущие узлы кондиционера.

Вспомним судьбу консервных банок, изготовленных из луженой жести. Все бывает хорошо, пока банку не поцарапаешь. А уж коль случилось такое, «всей птичке пропасть»: луженая сталь в месте повреждения ржавеет гораздо быстрее нелуженой. Поэтому не будем говорить о «вечных луженых кузовах» – может выйти неловко.

Ссылка на основную публикацию